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1 Introduction

It is that time in the quarter (it is still week one) when we get to talk about probability. Again we are going to
build up from first principles. We will heavily use the counting that we learned earlier this week.

2 Conditional Probability

In English, a conditional probability states “what is the chance of an event E happening given that I have
already observed some other event F”. It is a critical idea in machine learning and probability because it
allows us to update our beliefs in the face of new evidence.

When you condition on an event happening you are entering the universe where that event has taken place.
Mathematically, if you condition on F , then F becomes your new sample space. In the universe where F has
taken place, all rules of probability still hold!

The definition for calculating conditional probability is:

Definition of Conditional Probability
The probability of E given that (aka conditioned on) event F already happened:

P(E|F) =
P(E ∩F)

P(F)

Lets turn to our visualization friend to get an intuition for why this is true. Again consider events E and F
which have outcomes that are subsets of a sample space with 50 equally likely outcomes, each one drawn as
a hexagon:

Figure 1: Conditional Probability Intuition
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Conditioning on F means that we have entered the world where F has happened (and F , which has 14
equally likely outcomes, has become our new sample space). Given that event F has occurred, the conditional
probability that event E occurs is the subset of the outcomes of E that are consistent with F . In this case we
can visually see that those are the three outcomes in E ∩F . Thus we have the:

P(E|F) =
P(E ∩F)

P(F)
=

3/50
14/50

=
3

14
≈ 0.21

Even though the visual example (with equally likely outcome spaces) is useful for gaining intuition, condi-
tional probability applies regardless of whether the sample space has equally likely outcomes!

The Chain Rule
The definition of conditional probability can be rewritten as:

P(E ∩F) = P(E|F)P(F)

which we call the Chain Rule. Intuitively it states that the probability of observing events E and F is the
probability of observing F, multiplied by the probability of observing E, given that you have observed F.
Here is the general form of the Chain Rule:

P(E1∩E2∩·· ·∩En) = P(E1)P(E2|E1) . . .P(En|E1 . . .En−1)

3 Law of Total Probability

An astute person once observed that when looking at a picture, like the one in figure 1, that event E can be
thought of as having two parts, the part that is in F , (E ∩F), and the part that isn’t, (E ∩FC). This is true
because F and FC are mutually exclusive sets of outcomes which together cover the entire sample space.
After further investigation this proved to be mathematically true, and there was much rejoicing:

P(E) = P(E ∩F)+P(E ∩FC)

This observation proved to be particularly useful when it was combined with the chain rule and gave rise to a
tool so useful, it was given the big name, law of total probability.

The Law of Total Probability
If we combine our above observation with the chain rule, we get a very useful formula:

P(E) = P(E|F)P(F)+P(E|FC)P(FC)

There is a more general version of the rule. If you can divide your sample space into any number of
mutually exclusive events: B1,B2, . . .Bn such that every outcome in sample space fall into one of those
events, then:

P(E) =
n

∑
i=1

P(E|Bi)P(Bi)

The name total (I assume) comes from the fact that the events in Bi have to make up the total sample
space.
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4 Bayes Theorem

Bayes Theorem is one of the most ubiquitous results in probability for computer scientists. Very often we
know a conditional probability in one direction, say P(E|F), but we would like to know the conditional
probability in the other direction. Bayes Theorem provides a way to convert from one to the other. We can
derive Bayes Theorem by starting with the definition of conditional probability:

P(E|F) =
P(F ∩E)

P(F)

Now we can expand P(F ∩E) using the chain rule, which results in Bayes Theorem.

Bayes Theorem
The most common form of Bayes Theorem is:

P(E|F) =
P(F |E)P(E)

P(F)

The different terms in the Bayes Rule formula have different terms. The P(E|F) term is often called the
“posterior” the P(E) term is often called the “prior”. The P(F |E) term is called the update and P(F) is
often called the normalization constant.

In the case where the denominator is not known (the probability of the event you were initially condi-
tioning on), you can expand it using the law of Total Probability:

P(E|F) =
P(F |E)P(E)

P(F |E)P(E)+P(F |EC)P(EC)

A common scenario for applying the Bayes Rule formula is when you want to know the probability of
something “unobservable” given an “observed” event. For example, you want to know the probability that a
student understands a concept, given that you observed them solving a particular problem. It turns out it is
much easier to first estimate the probability that a student can solve a problem given that they understand the
concept and then to apply Bayes Theorem. Intuitively, you can think about this as updating a belief given
evidence.

The “expanded” version of Bayes Rule (at the bottom of the Bayes Theorem box) allows you to work around
not immediately knowing the denominator P(F). It is worth exploring this in more depth because there are
many cases where P(F) is unknown or even unknowable.

4.1 Bayes with the General Law of Total Probability

The way to work around not directly knowing P(F) employed by the expanded version of Bayes was to
use the simple case of the law of total probability. In other contexts you may want to use the more general
version of the law. For example say we are trying to track a phone which could be in any one of n discrete
locations and we have prior beliefs P(B1) . . .P(Bn) as to whether the phone is in location Bk. Now we gain
some evidence (such as a particular signal strength from a particular cell tower) that we call F and we need
to update all of our probabilities to be P(Bk|F).

The probability of the observation, assuming that the the phone is in location Bk, P(F |Bk), is something that
can be given to you by an expert. In this case the probability of getting a particular signal strength given a
location Bk will be determined by the distance between the cell tower and location Bk. As a note on notation,
you can plug in any location for Bk.

Since we are assuming that the phone must be in exactly one of the locations, we can find the probability of
any of the event Bk given F by first applying Bayes Rule and then applying the general version of the law of
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total probability:

P(Bk|F) =
P(F |Bk)P(Bk)

P(F)
=

P(F |Bk)P(Bk)

∑
n
i=1 P(E|Bi)P(Bi)

4.2 Bayes with Relative Probabilities

There are times when we would like to use Bayes Theorem to update a belief, but there is no way to calculate
the probability of the event observed, P(F). All hope is not lost. In such situations we can still calculate
the relative probability of events. For example, imagine we would like to answer the question, is even A
or event B more likely given an observation F . We can express this mathematically as calculating whether
P(A|F)/P(B|F) is greater than or equal to 1. Both of those terms can be expanded using Bayes, and when
they are expanded the P(F) term cancels out:

P(A|F)

P(B|F)
=
(P(F |A)P(A)

P(F)

)
/
(P(F |B)P(B)

P(F)

)
Bayes theorem applied twice

=
(P(F |A)P(A)

P(F)

)
·
( P(F)

P(F |B)P(B)

)
Division is multiplication by the inverse

=
P(F |A)P(A)
P(F |B)P(B)

The P(F) terms cancel out

5 Conditional Paradigm

When you condition on an event you enter the universe where that event has taken place. In that new universe
all the laws of probability hold. Thus, as long as you condition consistently on the same event, every one of
the tools we have learned still apply. Let’s look at a few of our old friends when we condition consistently on
an event (in this case G):

Name of Rule Original Rule Conditional Rule

Axiom of probability 0≤ P(E)≤ 1 0≤ P(E|G)≤ 1

Axiom of probability P(E) = 1−P(EC) P(E|G) = 1−P(EC|G)

Chain Rule P(E ∩F) = P(E|F)P(F) P(E ∩F |G) = P(E|FG)P(F |G)

Bayes Theorem P(E|F) = P(F |E)P(E)
P(F) P(E|FG) = P(F |EG)P(E|G)

P(F |G)

Other properties like mutual exclusion and independence also exist in the world where we have conditioned
on an event (and the rules for calculating probabilities when these conditions hold still apply). However, as a
word of caution, conditioning on a new event could change the independence or mutual/exclusion relationship
between two events.

6 Independence Revisited

Our new understanding of conditional probability can give us a fresh insight into the independence. It also
introduces a new concept: conditional independence.
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First, lets revisit the definition of conditional probability, this time for two independent events E and F :

P(E|F) =
P(E ∩F)

P(F)
Definition of conditional probability

=
P(E)P(F)

P(F)
Since E and F are independent

= P(E) Since the P(F) terms cancel out

Similarly P(F |E) = P(F). Not only does this give us a new formula when working with independent events,
it gives another angle for understanding what independence means. If two events are independent, knowing
that one event has occurred gives you no additional information that the other event will occurred.

6.1 Conditional Independence

Conditioning on any event can have a dramatic effect on the independence relationships of any pair of events.
Events that were previously independent can become dependent. Events that were previously dependent can
become independent.

Two events E and F are called conditionally independent given G, if

P(E ∩F |G) = P(E|G)P(F |G)

Or, equivalently:

P(E|F,G) = P(E|G)

The two events can be conditionally independent, even if they are dependent without conditioning.

6.2 Breaking Independence

Warning: this point does not have a large impact on the rest of CS109. But I wanted to pass on this surprising
insight so that you have a more full understanding of probability. If two events E and F are independent, it is
possible that there exists another event G such that E|G is no longer independent of F |G.

As an example, Let’s say a person has a fever (G) if they either have malaria (E) or have an infection (F).
We are going to assume that getting malaria (E) and having an infection (F) are independent: knowing if a
person has malaria does not tell us if they have an infection. Now, a patient walks into a hospital with a fever
(G). Your belief that the patient has malaria, given that they have a fever, P(E|G), is high and your belief that
the patient has an infection given that they have a fever, P(F |G), is high. Both explain the fever.

Interestingly, at this point in time (conditioned on G), given our knowledge that the patient has a fever, gaining
the knowledge that the patient has malaria will change your belief the patient has an infection! The malaria
explains why the patient has a fever, and so the alternate explanation becomes less likely. The two events
(which were previously independent) are dependent now that we have conditioned on the patient having a
fever.
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